aboutsummaryrefslogtreecommitdiffstats
path: root/protocols/oscar/msgcookie.c
blob: efeb8cbf6412a90151522fbdc3daeda42d7ecead (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
 * Cookie Caching stuff. Adam wrote this, apparently just some
 * derivatives of n's SNAC work. I cleaned it up, added comments.
 * 
 */

/*
 * I'm assuming that cookies are type-specific. that is, we can have
 * "1234578" for type 1 and type 2 concurrently. if i'm wrong, then we
 * lose some error checking. if we assume cookies are not type-specific and are
 * wrong, we get quirky behavior when cookies step on each others' toes.
 */

#include <aim.h>
#include "info.h"

/**
 * aim_cachecookie - appends a cookie to the cookie list
 * @sess: session to add to
 * @cookie: pointer to struct to append
 *
 * if cookie->cookie for type cookie->type is found, updates the
 * ->addtime of the found structure; otherwise adds the given cookie
 * to the cache
 *
 * returns -1 on error, 0 on append, 1 on update.  the cookie you pass
 * in may be free'd, so don't count on its value after calling this!
 * 
 */
int aim_cachecookie(aim_session_t *sess, aim_msgcookie_t *cookie)
{
	aim_msgcookie_t *newcook;

	if (!sess || !cookie)
		return -EINVAL;

	newcook = aim_checkcookie(sess, cookie->cookie, cookie->type);
	
	if (newcook == cookie) {
		newcook->addtime = time(NULL);
		return 1;
	} else if (newcook)
		aim_cookie_free(sess, newcook);

	cookie->addtime = time(NULL);  

	cookie->next = sess->msgcookies;
	sess->msgcookies = cookie;

	return 0;
}

/**
 * aim_uncachecookie - grabs a cookie from the cookie cache (removes it from the list)
 * @sess: session to grab cookie from
 * @cookie: cookie string to look for
 * @type: cookie type to look for
 *
 * takes a cookie string and a cookie type and finds the cookie struct associated with that duple, removing it from the cookie list ikn the process.
 *
 * if found, returns the struct; if none found (or on error), returns NULL:
 */
aim_msgcookie_t *aim_uncachecookie(aim_session_t *sess, guint8 *cookie, int type)
{
	aim_msgcookie_t *cur, **prev;

	if (!cookie || !sess->msgcookies)
		return NULL;

	for (prev = &sess->msgcookies; (cur = *prev); ) {
		if ((cur->type == type) && 
				(memcmp(cur->cookie, cookie, 8) == 0)) {
			*prev = cur->next;
			return cur;
		}
		prev = &cur->next;
	}

	return NULL;
}

/**
 * aim_mkcookie - generate an aim_msgcookie_t *struct from a cookie string, a type, and a data pointer.
 * @c: pointer to the cookie string array
 * @type: cookie type to use
 * @data: data to be cached with the cookie
 *
 * returns NULL on error, a pointer to the newly-allocated cookie on
 * success.
 *
 */
aim_msgcookie_t *aim_mkcookie(guint8 *c, int type, void *data) 
{
	aim_msgcookie_t *cookie;

	if (!c)
		return NULL;

	if (!(cookie = g_new0(aim_msgcookie_t,1)))
		return NULL;

	cookie->data = data;
	cookie->type = type;
	memcpy(cookie->cookie, c, 8);

	return cookie;
}

/**
 * aim_checkcookie - check to see if a cookietuple has been cached
 * @sess: session to check for the cookie in
 * @cookie: pointer to the cookie string array
 * @type: type of the cookie to look for
 *
 * this returns a pointer to the cookie struct (still in the list) on
 * success; returns NULL on error/not found
 *
 */

aim_msgcookie_t *aim_checkcookie(aim_session_t *sess, const guint8 *cookie, int type)
{
	aim_msgcookie_t *cur;

	for (cur = sess->msgcookies; cur; cur = cur->next) {
		if ((cur->type == type) && 
				(memcmp(cur->cookie, cookie, 8) == 0))
			return cur;   
	}

	return NULL;
}

/**
 * aim_cookie_free - free an aim_msgcookie_t struct
 * @sess: session to remove the cookie from
 * @cookiep: the address of a pointer to the cookie struct to remove
 *
 * this function removes the cookie *cookie from teh list of cookies
 * in sess, and then frees all memory associated with it. including
 * its data! if you want to use the private data after calling this,
 * make sure you copy it first.
 *
 * returns -1 on error, 0 on success.
 *
 */
int aim_cookie_free(aim_session_t *sess, aim_msgcookie_t *cookie) 
{
	aim_msgcookie_t *cur, **prev;

	if (!sess || !cookie)
		return -EINVAL;

	for (prev = &sess->msgcookies; (cur = *prev); ) {
		if (cur == cookie)
			*prev = cur->next;
		else
			prev = &cur->next;
	}

	g_free(cookie->data);
	g_free(cookie);

	return 0;
} 
lass="p">, 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004 }; static const uint32_t SB2[64] = { 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000 }; static const uint32_t SB3[64] = { 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200 }; static const uint32_t SB4[64] = { 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080 }; static const uint32_t SB5[64] = { 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100 }; static const uint32_t SB6[64] = { 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010 }; static const uint32_t SB7[64] = { 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002 }; static const uint32_t SB8[64] = { 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000 }; /* PC1: left and right halves bit-swap */ static const uint32_t LHs[16] = { 0x00000000, 0x00000001, 0x00000100, 0x00000101, 0x00010000, 0x00010001, 0x00010100, 0x00010101, 0x01000000, 0x01000001, 0x01000100, 0x01000101, 0x01010000, 0x01010001, 0x01010100, 0x01010101 }; static const uint32_t RHs[16] = { 0x00000000, 0x01000000, 0x00010000, 0x01010000, 0x00000100, 0x01000100, 0x00010100, 0x01010100, 0x00000001, 0x01000001, 0x00010001, 0x01010001, 0x00000101, 0x01000101, 0x00010101, 0x01010101, }; /* platform-independant 32-bit integer manipulation macros */ #define GET_UINT32(n,b,i) \ { \ (n) = ( (uint32_t) (b)[(i) ] << 24 ) \ | ( (uint32_t) (b)[(i) + 1] << 16 ) \ | ( (uint32_t) (b)[(i) + 2] << 8 ) \ | ( (uint32_t) (b)[(i) + 3] ); \ } #define PUT_UINT32(n,b,i) \ { \ (b)[(i) ] = (uint8_t) ( (n) >> 24 ); \ (b)[(i) + 1] = (uint8_t) ( (n) >> 16 ); \ (b)[(i) + 2] = (uint8_t) ( (n) >> 8 ); \ (b)[(i) + 3] = (uint8_t) ( (n) ); \ } /* Initial Permutation macro */ #define DES_IP(X,Y) \ { \ T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \ T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \ T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \ T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \ Y = ((Y << 1) | (Y >> 31)) & 0xFFFFFFFF; \ T = (X ^ Y) & 0xAAAAAAAA; Y ^= T; X ^= T; \ X = ((X << 1) | (X >> 31)) & 0xFFFFFFFF; \ } /* Final Permutation macro */ #define DES_FP(X,Y) \ { \ X = ((X << 31) | (X >> 1)) & 0xFFFFFFFF; \ T = (X ^ Y) & 0xAAAAAAAA; X ^= T; Y ^= T; \ Y = ((Y << 31) | (Y >> 1)) & 0xFFFFFFFF; \ T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \ T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \ T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \ T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \ } /* DES round macro */ #define DES_ROUND(X,Y) \ { \ T = *SK++ ^ X; \ Y ^= SB8[ (T ) & 0x3F ] ^ \ SB6[ (T >> 8) & 0x3F ] ^ \ SB4[ (T >> 16) & 0x3F ] ^ \ SB2[ (T >> 24) & 0x3F ]; \ \ T = *SK++ ^ ((X << 28) | (X >> 4)); \ Y ^= SB7[ (T ) & 0x3F ] ^ \ SB5[ (T >> 8) & 0x3F ] ^ \ SB3[ (T >> 16) & 0x3F ] ^ \ SB1[ (T >> 24) & 0x3F ]; \ } /* DES key schedule */ int des_main_ks( uint32_t SK[32], const uint8_t key[8] ) { int i; uint32_t X, Y, T; GET_UINT32( X, key, 0 ); GET_UINT32( Y, key, 4 ); /* Permuted Choice 1 */ T = ((Y >> 4) ^ X) & 0x0F0F0F0F; X ^= T; Y ^= (T << 4); T = ((Y ) ^ X) & 0x10101010; X ^= T; Y ^= (T ); X = (LHs[ (X ) & 0xF] << 3) | (LHs[ (X >> 8) & 0xF ] << 2) | (LHs[ (X >> 16) & 0xF] << 1) | (LHs[ (X >> 24) & 0xF ] ) | (LHs[ (X >> 5) & 0xF] << 7) | (LHs[ (X >> 13) & 0xF ] << 6) | (LHs[ (X >> 21) & 0xF] << 5) | (LHs[ (X >> 29) & 0xF ] << 4); Y = (RHs[ (Y >> 1) & 0xF] << 3) | (RHs[ (Y >> 9) & 0xF ] << 2) | (RHs[ (Y >> 17) & 0xF] << 1) | (RHs[ (Y >> 25) & 0xF ] ) | (RHs[ (Y >> 4) & 0xF] << 7) | (RHs[ (Y >> 12) & 0xF ] << 6) | (RHs[ (Y >> 20) & 0xF] << 5) | (RHs[ (Y >> 28) & 0xF ] << 4); X &= 0x0FFFFFFF; Y &= 0x0FFFFFFF; /* calculate subkeys */ for( i = 0; i < 16; i++ ) { if( i < 2 || i == 8 || i == 15 ) { X = ((X << 1) | (X >> 27)) & 0x0FFFFFFF; Y = ((Y << 1) | (Y >> 27)) & 0x0FFFFFFF; } else { X = ((X << 2) | (X >> 26)) & 0x0FFFFFFF; Y = ((Y << 2) | (Y >> 26)) & 0x0FFFFFFF; } *SK++ = ((X << 4) & 0x24000000) | ((X << 28) & 0x10000000) | ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000) | ((X << 6) & 0x01000000) | ((X << 9) & 0x00200000) | ((X >> 1) & 0x00100000) | ((X << 10) & 0x00040000) | ((X << 2) & 0x00020000) | ((X >> 10) & 0x00010000) | ((Y >> 13) & 0x00002000) | ((Y >> 4) & 0x00001000) | ((Y << 6) & 0x00000800) | ((Y >> 1) & 0x00000400) | ((Y >> 14) & 0x00000200) | ((Y ) & 0x00000100) | ((Y >> 5) & 0x00000020) | ((Y >> 10) & 0x00000010) | ((Y >> 3) & 0x00000008) | ((Y >> 18) & 0x00000004) | ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001); *SK++ = ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000) | ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000) | ((X >> 2) & 0x02000000) | ((X << 1) & 0x01000000) | ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000) | ((X << 3) & 0x00080000) | ((X >> 6) & 0x00040000) | ((X << 15) & 0x00020000) | ((X >> 4) & 0x00010000) | ((Y >> 2) & 0x00002000) | ((Y << 8) & 0x00001000) | ((Y >> 14) & 0x00000808) | ((Y >> 9) & 0x00000400) | ((Y ) & 0x00000200) | ((Y << 7) & 0x00000100) | ((Y >> 7) & 0x00000020) | ((Y >> 3) & 0x00000011) | ((Y << 2) & 0x00000004) | ((Y >> 21) & 0x00000002); } return( 0 ); } #if TEST int des_set_key( des_context *ctx, uint8_t key[8] ) { int i; /* setup encryption subkeys */ des_main_ks( ctx->esk, key ); /* setup decryption subkeys */ for( i = 0; i < 32; i += 2 ) { ctx->dsk[i ] = ctx->esk[30 - i]; ctx->dsk[i + 1] = ctx->esk[31 - i]; } return( 0 ); } /* DES 64-bit block encryption/decryption */ void des_crypt( uint32_t SK[32], uint8_t input[8], uint8_t output[8] ) { uint32_t X, Y, T; GET_UINT32( X, input, 0 ); GET_UINT32( Y, input, 4 ); DES_IP( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_FP( Y, X ); PUT_UINT32( Y, output, 0 ); PUT_UINT32( X, output, 4 ); } void des_encrypt( des_context *ctx, uint8_t input[8], uint8_t output[8] ) { des_crypt( ctx->esk, input, output ); } void des_decrypt( des_context *ctx, uint8_t input[8], uint8_t output[8] ) { des_crypt( ctx->dsk, input, output ); } /* Triple-DES key schedule */ int des3_set_2keys( des3_context *ctx, const uint8_t key1[8], const uint8_t key2[8] ) { int i; des_main_ks( ctx->esk , key1 ); des_main_ks( ctx->dsk + 32, key2 ); for( i = 0; i < 32; i += 2 ) { ctx->dsk[i ] = ctx->esk[30 - i]; ctx->dsk[i + 1] = ctx->esk[31 - i]; ctx->esk[i + 32] = ctx->dsk[62 - i]; ctx->esk[i + 33] = ctx->dsk[63 - i]; ctx->esk[i + 64] = ctx->esk[ i]; ctx->esk[i + 65] = ctx->esk[ 1 + i]; ctx->dsk[i + 64] = ctx->dsk[ i]; ctx->dsk[i + 65] = ctx->dsk[ 1 + i]; } return( 0 ); } #endif int des3_set_3keys( des3_context *ctx, const uint8_t key1[8], const uint8_t key2[8], const uint8_t key3[8] ) { int i; des_main_ks( ctx->esk , key1 ); des_main_ks( ctx->dsk + 32, key2 ); des_main_ks( ctx->esk + 64, key3 ); for( i = 0; i < 32; i += 2 ) { ctx->dsk[i ] = ctx->esk[94 - i]; ctx->dsk[i + 1] = ctx->esk[95 - i]; ctx->esk[i + 32] = ctx->dsk[62 - i]; ctx->esk[i + 33] = ctx->dsk[63 - i]; ctx->dsk[i + 64] = ctx->esk[30 - i]; ctx->dsk[i + 65] = ctx->esk[31 - i]; } return( 0 ); } /* Triple-DES 64-bit block encryption/decryption */ void des3_crypt( uint32_t SK[96], uint8_t input[8], uint8_t output[8] ) { uint32_t X, Y, T; GET_UINT32( X, input, 0 ); GET_UINT32( Y, input, 4 ); DES_IP( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_ROUND( Y, X ); DES_ROUND( X, Y ); DES_FP( Y, X ); PUT_UINT32( Y, output, 0 ); PUT_UINT32( X, output, 4 ); } void des3_encrypt( des3_context *ctx, uint8_t input[8], uint8_t output[8] ) { des3_crypt( ctx->esk, input, output ); } void des3_decrypt( des3_context *ctx, uint8_t input[8], uint8_t output[8] ) { des3_crypt( ctx->dsk, input, output ); } size_t ssl_des3_encrypt( const unsigned char *key, size_t key_len, const unsigned char *input, size_t input_len, const unsigned char *iv, unsigned char **res ) { des3_context ctx3; size_t off; uint8_t buf[8]; /* Keep it simple, for as long as this is just used for MSN auth anyway. */ if( key_len != 24 || ( input_len % 8 ) != 0 ) return 0; *res = g_malloc( input_len ); des3_set_3keys( &ctx3, key, key + 8, key + 16 ); /* This loop does CBC 3DES. */ memcpy( buf, iv, 8 ); for( off = 0; off < input_len; off += 8 ) { int i; for( i = 0; i < 8; i ++ ) buf[i] ^= input[off+i]; des3_encrypt( &ctx3, buf, buf ); memcpy( *res + off, buf, 8 ); } return input_len; } #ifdef TEST #include <string.h> #include <stdio.h> /* * Triple-DES Monte Carlo Test: ECB mode * source: NIST - tripledes-vectors.zip */ static const unsigned char DES3_keys[3][8] = { { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF }, { 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01 }, { 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01, 0x23 } }; static const unsigned char DES3_init[8] = { 0x4E, 0x6F, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74 }; static const unsigned char DES3_enc_test[3][8] = { { 0x6A, 0x2A, 0x19, 0xF4, 0x1E, 0xCA, 0x85, 0x4B }, { 0x03, 0xE6, 0x9F, 0x5B, 0xFA, 0x58, 0xEB, 0x42 }, { 0xDD, 0x17, 0xE8, 0xB8, 0xB4, 0x37, 0xD2, 0x32 } }; static const unsigned char DES3_dec_test[3][8] = { { 0xCD, 0xD6, 0x4F, 0x2F, 0x94, 0x27, 0xC1, 0x5D }, { 0x69, 0x96, 0xC8, 0xFA, 0x47, 0xA2, 0xAB, 0xEB }, { 0x83, 0x25, 0x39, 0x76, 0x44, 0x09, 0x1A, 0x0A } }; int main( void ) { int m, n, i; des_context ctx; des3_context ctx3; unsigned char buf[8]; for( m = 0; m < 2; m++ ) { printf( "\n Triple-DES Monte Carlo Test (ECB mode) - " ); if( m == 0 ) printf( "encryption\n\n" ); if( m == 1 ) printf( "decryption\n\n" ); for( n = 0; n < 3; n++ ) { printf( " Test %d, key size = %3d bits: ", n + 1, 64 + n * 64 ); fflush( stdout ); memcpy( buf, DES3_init, 8 ); switch( n ) { case 0: des_set_key( &ctx, DES3_keys[0] ); break; case 1: des3_set_2keys( &ctx3, DES3_keys[0], DES3_keys[1] ); break; case 2: des3_set_3keys( &ctx3, DES3_keys[0], DES3_keys[1], DES3_keys[2] ); break; } for( i = 0; i < 10000; i++ ) { if( n == 0 ) { if( m == 0 ) des_encrypt( &ctx, buf, buf ); if( m == 1 ) des_decrypt( &ctx, buf, buf ); } else { if( m == 0 ) des3_encrypt( &ctx3, buf, buf ); if( m == 1 ) des3_decrypt( &ctx3, buf, buf ); } } if( ( m == 0 && memcmp( buf, DES3_enc_test[n], 8 ) ) || ( m == 1 && memcmp( buf, DES3_dec_test[n], 8 ) ) ) { printf( "failed!\n" ); return( 1 ); } printf( "passed.\n" ); } } printf( "\n" ); return( 0 ); } #endif